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←
Thevector it is a geometric object. It has

length / magnitude , an orientation / angle
relative to other vectors , as well as a dot

product with other vectors
- but we don't

have any of these things until we have

defined a metric g ! What do we have?



it belongs to a vector space7

(with all the usual vector space axioms)

If we choose a set of basis vectors ,

such as ( F , j , E) , we can
decompose Ñ into

= 0
✗ &+ V9 y^ + VZ ^z .



The same vector Ñ can be expressed

in many different choices of basis .

↑f
^xsg

J = 0 ✗ + V9 § + ✓2- ^z .
= 0

✗ '

+ V9 '^y'+ ✓2-
'

^z?



The sum 8 = 0 ✗ %+ v9 y^ + vz ^z
can be written in a more compact form .

J = 0 ✗ + V9 § + v7 ^z
i = I v3 Ii

É
F = Vi Ii = Viki' .

This is the Einstein summation convention:

repeated indices are summed over.



Let's consider the dot product e.g. it
• Ñ as

depicted in the diagram . we are used to the

formula Ñ • Ñ = U✗ + UY v9 + U2-
,

but this is only in aspecific coordinate

system with a specific metric ! What does

it . i seem to be ? What if we distort the

diagram? How do arrive at the right formula?

F¥



it and it may appear to be perpendicular, indicating
adot product of zero, but note what happens if
we allow the diagram to distort :

I
Choosing to depict it asÑ though , we see something else.

→ I
Do we see a- • 5=0 represented here? What is Ñ ?



Ñ is the dual vector to it , in that-
if we say it lives in a vector space TT,

then it lives in the dual space→
*
.

Dual vectors , also called I - forms
,

take in vectors as input#turn

scalars
.

Ñ : TT→ IR

It is our companion to vectors .



How do we express Ñ , given that we

can express it as it = ✓
✗& + v9§ + E- ?

Just as a vector space F- can be spanned

by a choice of basis vectors . the dual

space F-
* is spanned by dual basis vectors .

→ Ñ = Ux DX + Ug dy + Uzdz

How are these defined?



The dual basis vectors dxi are

defined such that dxi ( Ij ) = Sij ,
the Kronecker delta symbol :-{ to .

In this way , we can see how Tdxipicks
/

out the i-th component of a vector J :

DX (E) = dx(F)+ old#+d#z)
DX (E) = .



The dual Ñ to a vector it is obtained via
the metric g: ui=g.

The metric is

expressed as aÑpoduct of 1-forms:

9 = gijdxi ☒ dxi , then , we have :

gie =gijdxi ☒ dxi Uk In
=gijukdxi(In)☒ dxi
=gijuksikdxi
=gijuidxi
= Ujdxi = it .

✓



How do we depict the basis 1-forms ?

Recall that dxi (F) = Vi - the 1- form

projects thevector along a direction . We

can then depict, for example DX , as :

/ /
d✗

dx (F) =3 , the number" " of intersections
.

- ×



The depiction of DX has a length
- ' nature,

cancellingout the dimensions of length a
vector Ñ has

, yielding a dimensionless number.
Ex :

*
✓→ 20

1*1*11
my

dX→2d✗_
=

Note that the depiction is a discretized one -

while dx (E) ER , the number of intersections c-☒ .

Also note that the lines representing dx should be

thought of as extending in all directions !



8
Let's now consider how Jai defines avector

ateach

point, even in curvilinear coordinates, forfixedi.

Every vector Ñ at a point p corresponds to a

possible directional derivative of a function f-
:

i → DEF = viaExif . We then write

DEF as If → it = oilJxi •

Dual basis vectors are defined such that /Ñj)=8j .
( Note Ji is shorthand for a/gxi)-

/



In flat space with a Cartesian coordinate
it

system we have:
Note now

⇔.⇒:÷f÷É¥¥÷dy
smooth manifolds in space are locally flat .

ÉÉ¥¥¥¥iE¥¥.
"

DX '

Note how I - forms follow lines of constant value .

we will see later that gradients are 1- forms .



we are now ready to discuss the dot
product (scalar product) ina generic coordinate

system with generic metric .

a- . I = Uia; • vi 2J

f
it (E) = Uidxivi Jj

= diving; • Jj = Uividx" Jj
=Uhrig ij = Uivisij
= Uj VI = Ui Ui ✓

Note :

/gij=• We will see mathematically how
it(F) is preserved under transformations .



Given an arbitrary ,
differentiable coordinate

transformation Xu ' (✗a) , Xu
'

= Xu
'

(XM)
the jacobian

DX"'

☒
is the

linear approximation
'

= um §✗÷µ
to the transformation

at a point.
-

Tensors
,
defined at a point,

%' = 4 §✗÷µ,
transform with factors

of the Cinverse) jacobian .



we can deduce these rules by examiningthe chainrule:

d✗ = 0¥,,DX ' + ¥g, dy' → DX = ⇒µd✗ⁿ'
→ dx¥,diᵈ / also,¥¥I
-

Then , we have :

um 2Exit "3¥'¥m=%m→H=u¥
uudxm-uigx-ju.dk

'

= bid✗"⇒ui¥i/.
-



Let's now reexamine how Ñ (F) behaves

under a coordinate transformation :

ñiñl = union
'
= ur¥%, ✓¥:

'

= urA¥%¥:
'

= unit 8%

= Ur on

= i (F) ✓ → The scalar product
is preserved under coordinate transformations!



Finally now we can answer one of the

most important questions about vectors :

what is its length/ magnitude?

IF I =⇒= =✓g
Note: our metric also transforms under

coordinate transformations ! As it has two

lower indices
, /guii-guug-E.FI#.



SummaryI : vectors and I- forms

( and their depictions !) transform in

complementary ways so that scalar

products (depicted by number of intersections)

are preserved under coordinate trans-

a- ñ 'formations !
⑧→# it



Summary-1-1 : The metric ( or inner product) ,

often denoted by g , is the additional structure

that is needed to be added toTt to define

the lengths/magnitudes of vectors, as well as

the angle between two vectors . It is the

metric that defines the geometry of the space.
ñ -9s 1111 ñ

END


