

Lesson Three .

A sincerity to interiors.

In the last two lessons, we've gotten to know vectors, one-forms, and scalar products guite well. Let us now talk about products of these objects. Consider the product $s^{\mu}t^{\nu}$ $u_{\mu}u_{\nu}$, shown below. U^{\vee} u_{μ} $u_{\mu}v_{\nu}$?

Buth s^{ul}ly and t^{ν} Uv give 2, yielding a product of 4. Could $U_{\mu}U_{\nu}$ be an area element?

It cannot be, since $s^v t^u u_\mu v_v = 0$. Consider the quantity Auv == UMVV - UMUV. In the case where $\tilde{u} = dx$, $\tilde{v} = dy$, and $\vec{s} = s^{\mu}\partial_{\mu}$, $\vec{t} = t^{\mu}\partial_{\mu}$, we have $A_{\mu\nu}$ $S^{\mu}t^{\nu} = \mu_{\mu}v_{\nu}S^{\mu}t^{\nu} - v_{\mu}u_{\nu}S^{\mu}t^{\nu}$ = $S^x + Y - S^y + Z^x$, which is the signed area spanned by the two vectors in the x-y plane! We give this antisymmetric product between it and $\tilde{\mathbf{u}}$ the name wedge product, and it is written as $\ddot{u} \wedge \ddot{v}$.

In tensor product notation, we have: n reasor product notation, we nowe:
 $A = U \wedge U$, and $A = \frac{1}{2} A_{\mu\nu}$ dan hard. $= \tilde{u} \otimes \tilde{v} - \tilde{v} \otimes \tilde{u} \Rightarrow$ $A_{\mu\nu} = u_{\mu}v_{\nu} - v_{\mu}u_{\nu}$ Notice that the definition of the wedge product means for any one-forms it and it, $\mathcal{U} \wedge \mathcal{U} = 0$, and $\mathcal{U} \wedge \mathcal{U} = -\tilde{\mathbf{V}} \wedge \mathcal{U}$. In our example, A = dx ^ dy was the area element in the x-y plane. Just as dx, dy, etc are our basis one-forms, elements such as dx ^ dy , dy ^dz , etc are our elements such as
basis two-forms.

Justas we depicted scalar products between vectors and one-form as a number of intersections, we will depict scalar products (e.g. Auv S^{ut V}) between vectors and two-forms as anumber of intersections between the two-form and the signed area spanned by the two vectors.

We can also obtain a two-form from a one-form by using an operator called the exterior derivative. On one-forms, it is given by :

$$
\frac{\partial f}{\partial x^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial f}{\partial x^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial f}{\partial x^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial f}{\partial x^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial f}{\partial x^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial f}{\partial x^{\mu}} = \frac{\partial f}{\partial y^{\mu}} = \frac{\partial
$$

an also obtain a two-form from a o
y an operator called the exterior derived the exterior derived
- forms, it is given by:
anow compute $d(d\phi) = d(\partial_v \phi dx^v)$
 $(\partial_v \phi dx^v) = \partial_v \partial_v \phi dx^u dx^v$
 $(\partial_v \phi dx^v) = \partial_v \partial_v \phi dx^u dx^v$
 $= -\partial_v \partial_v \phi dx$ Let us now compute $d(d\phi) = d(\partial_{\nu}\phi dx^{\nu}).$ d (dv ϕ dx^v) = ∂_μ dv ϕ dxⁿ^dx^v = andream ran $=-\partial_\mu\partial_\nu\phi$ dx^u^dx^v \rightarrow d (d ϕ) vanishes!

/

where A exists in the 2D plane, that is: $A = A_{\times}dx + A_{\times}dy$. $dA =$ ∂_μ Avdx^M adx^v, and μ and v range over (x,y) $dA = \partial_\mu A_x dx^\mu \wedge dx + \partial_\mu A_y dx^\mu dy$ $dA =$ o_×A_xdx[.]dx + o_xA_ydx^dy + $\partial_3A_xdy^{\lambda}dx + \partial_3A_3dy^{\lambda}dy$. Since dx and dy ay =0, and dx ay = - dy ax. we finally nave: $F = (g_x A_y - \partial_y A_x) dx \wedge dy$. The exterior derivative of a one-form computes the curl!

As an explicit example, lets compute $F=dA$ for the case

In our last lesson we encountered the differential forms $d\phi = \partial_{\mu}\phi dx^{\mu}$, $A = A_{\mu}dx^{\mu}$ \mathbf{u} , and F, which we now know how to express in terms of basis 2-forms . We will get to know these differential forms even better by integrating them. That is, by considering the integrals $\int d\phi$, $\int A$, and $\int F$.

This will also illuminate the nature of the exterior derivative, and we will see how to depict it.

Just as we depicted scalar products between 1-forms and vectors as the number of intersections between them, Integrals of differential forms over some manifold can be depicted as the number of intersections between them.

Let us consider $S_{\gamma_i}^E = S_{\gamma_i} E_i dx^i$ and $S_{\frac{1}{2}}^A = S_{\frac{1}{2}}A \cdot dx$. E has the property that any closed loop (e.g. g.) cosses its curves an even number of times, once in each direction. As each positive contribution to the loop integral has a corresponding negative contribution , all such integrals turn out to be zero! Meanwhile A lacks this feature. A nas non-zero circulation! Let us see how we can depict the associated curl.

Recall Stokes' Theorem for the curl operator : $(\vec{\nabla} \times \vec{A}) \cdot d\vec{a} = \oint_{\partial M} \vec{A} \cdot d\vec{l}$

If our closed loop integral has ^a non-zero circulation , it means that the area it encloses contains curl. These loops can be made arbitrarilysmall as long as they enclose precisely the feature that the gradiant of a field doesn't have - the endpoints of the curves that denote that these curves don't close!

We conclude then, that endpoints in our diagrams of differential 1-forms are indicative of curl at that location, and the exterior derivative picks out precisely these points .

We can then recognize $dE = dd\phi = 0$ is the differential forms version of the identity $\vec{\nabla} \times \vec{\nabla} \phi = 0$. We will also see that $dF = 0$, giving $ddA = 0$ too!

Let us compute dF. $dF = \partial_{\alpha} (\frac{1}{2}F_{\mu\nu}) d x^{\alpha} \wedge d x^{\mu} \wedge d x^{\nu}$ = $\frac{1}{2}\partial_{\alpha}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})$ dx^a ^ dx^u ^ dx^v $=$ $\frac{1}{2}$ $\frac{\partial}{\partial x}$ $\frac{\partial}{\partial y}$ $\frac{A}{v}$ $\frac{dx^{\alpha}}{\alpha}$ $\frac{dx^{\mu}}{\alpha}$ = = dadvAndx^a ^dx^a ^dx^v Which becomes zero for the same reason we saw JuJu [∅] dxM^dx✓ earlier in this lesson : partial derivatives commute , while the wedge product is antisymmetric! As this will occur for any differential form, we say $\int d^2=0$.

Let us recall stokes' theorem in its familiar vector calculus forms first.

 $\int \overline{\vec{\nabla}\phi \cdot d\vec{l}} = \phi(B) - \phi(A)$ $\iint_{\mathcal{U}} (\vec{\nabla} \times \vec{B}) \cdot d\vec{a} = \oint_{\partial M} \vec{B} \cdot d\vec{l}$ $JJJ_{H}\vec{\nabla}\cdot\vec{E}dV=\oint_{\partial M}\vec{E}\cdot d\vec{a}$ Three forms (e.g. $\rho = dx^{\mu}dy^{\mu}d\tau$) are volume forms and appear when 2-forms have a non-zero divergence.

Thinking of basis 1-forms as surfaces of constant cuordinates, we know that I-forms are depicted as surfaces in 3D as opposed to lines in 2D. Thinking of basis 2-forms as wedges of basis 1-forms, we also know 2-forms are depicted as lines as opposed to single points. \overline{z}_{Λ} $\frac{1}{\sqrt{2}}\int_{0}^{2}\frac{f(x)}{x^{2}}dx$ $\alpha \mathcal{U}_l$

Summary: Developing the language of differential forms led us to the exterior derivative, which we found identifies the " exterior " (endpoints, boundaries) of our depiction of a ^p-form , and tells us that these exteriors depict our ptl form ! Stokes' Theorem can be cast into this language , which tells us when the exterior (derivative) of a form lies in the interior of an integration manifold, an integral of the form on the manifold's boundary will give the same answer !