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In the last two lessons ,we've gotten to know vectors ,

one - forms , and scalar products quite well . Let us

now talk about products of these objects . Consider

the product SM-0 UseUv , shown below.

÷ :
-

↑-0o→#÷ ?
→ I

• •

1- su

Un Unvv ?

Both Shun and tu Vu give 2 , yielding a product

of 4 . Could Uµvu be an area element?



It cannot be , since su ti UnVu = 0 .

Consider the quantity Aviv := Unh - VuUu .
In the case where t = DX , F=dy , and
5 = Suze , É = t% ,

we have

Auv Suti = UntvSuti - VaUu Satu
= Sit" - SYt×

, which is the

signed area spanned by the two vectors
in the × -y plane ! we give this antisymmetric

product between it and Ñ the name wedget,
and it is written as it ^5

.



In tensor product notation , we have :

A = Ñ ^ Ñ
,
and A= ¥ Auv dxundx!

= it ☒ T - T ☒ it → Anu= Unit - view.

Notice that the definition of the wedge product
means for any one

-forms Ñ and Ñ
,

Ñ^Ñ = 0 , and inÑ = - Ñ^Ñ . In our example,

A = dx ^dy was the area element in the ×-y plane.

Just as DX, dy , etc are our basis one - forms,
elements such as dx ^dy , dy ^dz , etc are our

basis tmˢ .



Justas we depicted scalar products between

vectors and one-form as a number of intersections,

we will depict scalar products (e.g. Amu Smt)
between vectors and two-forms as anumber of

intersections between the two-form and the signed
area spanned by the two vectors .

ñ→#-i^→ fi• •

} '
→ §

ñ ñ^v



We can also obtain a two -form from a one- form

by using an operator called the e×tÉe .

On one - forms , it is given by :

/ aiwdxwdxxl .
#

Let usnow compute d (dol ) = d(2u∅dx°) .
d (2v0dxv) = 2ndv0 d×u^dx°

=-2%0 d✗°^dx"

=-2,20 d×u^dx°
⇒ d (dol) vanishes !



As an explicit example, let's compute F-= DA for the case

where A exists in the 2D plane , that is :

A = Axdx + Ay dy .
DA = 2µAvdXM^dÑ , andµ and v range over (x,y)

DA = 2nA✗DX" ^DX + On Aydxihdy
DA = 2×A×d✗^d×+2×Ayd✗^dy

+ 2yA×dy^d× + 2yAydy^dy .

Since dxadx and dy^dy=0 , and dx^dy = - dyad× ,
we finally have : F = ( 2✗Ay - Try Ax) DX ^dy .

The

exterior derivative of a one-form computes the curl !



In our last lesson we encountered the

differential forms def = 8µ∅dxT A = And✗
^

,

and F , which we now know how to express in

terms of basis 2-forms . We will get to know these

differential forms even better by integrating them .
That is

, by considering the integrals

fd∅
,
SA

,

and SF .
This will also illuminate the nature of the

exterior derivative
,
andwe will see how to depict it.



Let us consider the following three diagrams .

↑
" " ya
④ ↑⇒⇒= / EEEÉ aF-

→ ✗ # x→ ✗

Just as we depicted scalar products between
1- forms and vectors as the number of
intersections between them , Integrals of
differential forms over some manifold can be

depicted as the number of intersections
between them .



Let us consider §gF = §g.Eid✗
"
and

§gA = §,Aidxi . E has the property that
2 2

any closed loop (e.g.ge) crosses its curves
an even number of times

,
once in each direction .

As each positive contribution to the loop integral
has a corresponding negative contribution , all
such integrals turn out to be zero ! Meanwhile

A lacks this feature . A has non - zero circulation !
Let us see how we can depict the associated curl .



Recall Stokes' Theorem for the cart

operator : ✗E) •dei=§Ñ•dÑ
M 2M

If our closed loop integral has a non-zero circulation ,

it means that the area it encloses contains curl .

These loops can be made arbitrarilysmall as long
as they enclose precisely the feature that
thegradient of a field doesn't have - the

endpoints of the curves that denote that

these curves don't close!



we can now understand the diagram for dA = F.
""

;j÷÷¥É±÷÷÷÷:÷⇔d

• • • •

F?⃝ • • • •

✗→✗

We conclude then , that endpoints in our diagrams
of differential 1- forms are indicative of curl

at that location , and the exterior derivative

picks out precisely these points .



Returning to our diagram for E , we note that

as F- has zero curl, it can be represented as

the gradient of some scalarfield !

↑BaaʰBB→ ↑ @∅ d∅ = E

→ ✗ → ✗

we can then recognize DE = old¢ = 0 is the

differential forms version of the identity 8×34=0 .
We will also see that DF =0 , giving ddA =0 too !



Let us compute DF .

DF = Ja ( ÉFav) d✗✗ ^dxn ^ dx°
= £2✗ ( 2µA u - JuAu) dx^^ dxu^dxV
= £2 ✗2µAu d✗✗^dxn^dx°

- {2×2vAnd✗✗ ^die^dÑ
Which becomes zero for the same reason we saw

JuJu ∅ dxM^dx✓ earlier in this lesson :

partial derivatives commute , while the wedge
product is antisymmetric! Asthis will occur for

any differential form , we say /d2- .



Let us summarize the relations we've

explored so far :
O -form 1- form

* ↑BgaoBB⑤→ᵈ↑ @ to∅ d∅ %
8×34=0→ ✗

8
→ ✗

1- form a
2- form

* ↑=====Éa÷ ' / i. iii.a ¥0
→ →

✗

8-8xÑ=o

What about 3-forms?



Letus recall Stokes' theorem in its familiar

vector calculus forms first .

∅ •di = ∅ (B) - ∅ (A)

ffm@xi3I.da = § B- • dé
0M

µ
E.Édv =

◦µ
Éoda

Three forms (e.g. p = dxndyadz) are volume forms
and appear when 2-forms have a non -zero divergence .



Thinking of basis 1-forms as surfaces of constant
coordinates

,
we know that I -forms are depicted as

surfaces in 3D as opposed to lines in 2D .

Thinking of basis 2-forms as wedges of basis 1-forms,
wealso know 2-forms are depicted as lines as opposed
to single points . 2-a

¥4k:y

✗ /



Depicting two-forms in this way in 3D, as
one-dimensional curves intersected by / integrated with
two -dimensional surfaces

,
allows us to understand

Stokes' theorem in its differential form:

2D curl
3D dir

÷÷ÉÉ÷É÷ÉÉ=÷⇔mi. form

"

2-Form 3-form



Summary: Developing the language of
differential forms led us to the exterior derivative,
which we found identifies the "exterior

"

(endpoints,
boundaries) of our depiction of a p- form ,

and tells

us that these exteriors depict our ptl form ! Stokes'

Theorem can be cast into this language , which
tells us when the exterior (derivative) of a form
lies in the interior of an integration manifold ,
an integral of the form on the manifold's boundary
will give the same answer ! END


