A timeliness to potentials.

Lesson Two.

In our last lesson we encountered the metric $g = g_{ij} dx^{i} \otimes dx^{j} : V \rightarrow V^{*}$,which took vectors to their duals, I - forms. Now wewill consider a specific metric of, The Minkowski metric. $M = M_{\mu\nu}dx^{\mu}$ or dx^{ν} carries Greek indices denoting (t, x, y, z) and describes a space time geometry! ^M is defined by the mapping :

$$
\begin{array}{c|cccc}\n\hline\n\frac{\partial_t}{\partial t} & \frac{\eta}{\sqrt{2}} & -dt & 0_x & \frac{\eta}{\sqrt{2}} & dx \\
\hline\n\frac{\partial_y}{\partial t} & \frac{\eta}{\sqrt{2}} & dy & 0_x & \frac{\eta}{\sqrt{2}} & dz\n\end{array}
$$

Let's explore the metric of by computing the magnitudes of a couple of vectors. $if \vec{v} = \lambda \partial_x :$ $i + \vec{u} = \overline{\lambda \partial_{\epsilon}}$ $\Rightarrow |\vec{U}|^2 = \vec{U}(\vec{U}) = \vec{U} \vec{U}$ $\Rightarrow |\vec{u}|^2 = \vec{u}(\vec{u}) = \eta \vec{u}\vec{u}$ $\overline{\text{Cend}}$ \overline{G} = $\partial_{\overline{G}}$ and $\tilde{u} = -2dt$ $= |\vec{u}|^2 = -\frac{1}{2}dt(\frac{1}{2}\delta_{\epsilon}) = -4.$ $\Rightarrow |\vec{U}|^2 = \lambda dx (\lambda \delta_x) = 4$ $|\vec{v}|$ dx <u>ra </u> $d\mathbf{t}$ $\boldsymbol{\alpha}$ We can see here dx ($\vec{\sigma}$) = 2. We can see nere $-dt(\vec{\mu})=-2$.

The vector \vec{u} has a negative squared norm! it is an example of a timelike vector. As Ñ(ñ) is a scalar, we know it is a timelike vector in all coordinate systems. Let us now compute the norm of a vector $\vec{R} = \partial_t \vec{+} \partial_x$. $\text{Compute the norm of a vector } \bar{\mathbf{R}} = \partial_t$
 $|\hat{\mathbf{L}}|^2 = \hat{\mathbf{R}}(\bar{\mathbf{R}}) = \eta \bar{\mathbf{L}} \bar{\mathbf{R}} = \eta (\partial_t \cdot \partial_x)(\partial_t \cdot \partial_x)$ = $(-dt + dx)(\partial_t + \partial_x)$ = $d t + d x$) ($d t + d x$)
dt $\partial_t - d t + d x d_t + d x d_x = 0$. \Rightarrow \vec{l} is an example of a null vector! Let's see how 1- form addition can help us understand null vectors.

Here we describe now to add 1-forms together. \blacklozenge $AA+BZ$ $\mathcal{A}_{\mathcal{C}}$ $B-A$ We consider the unit: There are two ways to intersect both A and B, $\sqrt{2} = +2$ and $\sqrt{2} = 0$. The unit that fulfills both is: \sum . See \sum & \sum Note that this is with A and B having the orientations 1 and 7 as given. 1-forms have a sense of

dt, dx, and dretdt are depicted nese. We can also draw -dt+dx, by connecting the diagonals across the units in the other direction. We can see now how $\underline{\tilde{g}}(\overline{f})$ = 0, they don't intersect at all! We summarize: $|\vec{U}|^2 > 0 \Rightarrow$ spacelike $\left|\frac{\vec{u}}{\vec{u}}\right|^2 < 0 \Rightarrow$ timelike

Two coordinate systems with metric $\boldsymbol{\eta}$, one moving at velocity $\vec{\sigma} = \sigma \hat{x}$ relative to the other, are related by a Lorentz transformation: Lorentz transformation:
J 0 - Jf \overline{v} : x
E $y' = \gamma t - \gamma \beta x$ = y $x' = 8x - 866$ z ' ⁼ z Δ_{μ}^{μ} = $\begin{pmatrix} -9 & 2 \\ 0 & -9 \end{pmatrix}$, , **/** where $\beta = U/C$, $C =$ speed of light, and we have $\gamma = (1-\beta^2)^{-1/2}$ chosen units where $c=1$. (such a Λ is sometimes called a hyperbolic rotation.) Let us consider the vector $p^{\mu}=m\partial_{\epsilon}$, with m being a mass term. What is put in the moving frame?

 $P^{\mu} = \frac{\partial x^{\mu}}{\partial x^{\mu}}$ $P^{\prime\prime} = \Lambda^{\prime\prime}_{\mu} \rho^{\prime\prime}$ \Rightarrow $P^{\mu} \partial_{\mu'} = \gamma_{\mu} \partial_{\tau} - \gamma_{\mu} \partial_{\alpha}.$ if σ << c, $\gamma = (1 - \frac{\sigma^2}{c^2})^{-1/2} \approx 1 + \frac{1}{2} \sigma^2/c^2$ → p^u $\partial_\mu x \approx (m + 1/2 m v^2/c^2) \partial_\tau - (m v/c + 1/2 m v^2/c^3) \partial_\tau$ $\Rightarrow p^{m'c^2}\partial_{\mu'}xmc^2+\frac{1}{2}mv^2\partial_{\xi}-m\sigma c\partial_{x}$ $\mu \approx (m + \frac{1}{2}mv^2/c^2) \partial_{\theta} - (mv/c)^4$
 $\mu \approx mc^2 + \frac{1}{2}mv^2 \partial_{\theta} - m\sigma c \partial_{\theta}$
restmass The non-relativistic moment The non-relativistic Esimuss The non-relativistic momentum! kinetic energy ! We see that a particle's spatial mometum arises from its motion through time being (ny per bolically) rotated into a spatial dimension!

 7^t Let's do a relaoistic examplet N 14 $v = 4$ 5 c , $y = 5/3$ \Rightarrow $\left(\frac{q^{\mu}}{p^{\mu}}\right)^{2}$ $\overline{}$ " $\frac{1}{2}$ x $i\oint q\mu' = m \partial_{\xi}$ $\mathbf{q}^{\mathbf{t}}$ $qu' = \gamma m \partial_{\xi} + \gamma \beta m \partial_{\kappa}$. $q^{\mu'} = 5/3$ mot + $4/3$ m ox. $\boldsymbol{\chi}$

p^u and g^u are examples of 4-momeriun vectors, each seen at rest in their own frame, both seen at rest in their own frame, whose time component gives rise to spatial momentum (px', q*) when seen in a moving frame . What other physical quantities might behave like this ?

Having developed an intuition for now vectors such as $p^{\mu}\partial_{\mu}$ and $q^{\mu}\partial_{\mu}$ transform, we will also look at how 1 - forms such as $A = A\mu dx^{\mu}$ transform, and how to plot their components . Suppose we have $A' = -\phi' dt'$. What is A , the 1-form in the rest frame? $(\sigma = 4/5 c, \gamma = 5/3)$. Au = $\Lambda^{\mu'}_{\mu} A_{\mu} = A_{\mu} d x^{\mu} = -\gamma \phi' dt + \gamma \beta \phi' dx$ \Rightarrow Audx^u =-513\$'dt+413\$'dx.

What is this object ^A ?

 $A_{\mu} = g_{\mu\nu} A^{\nu}$ is the dual to $A^{\mu} = (d, \vec{A})$, where ϕ is the scalar potential and \overline{A} is the vector potential ! They fulfill the following equations : s the dual to A"

scalar potential a

! They fulfill the
 $|\vec{E}=-\vec{\nabla}\phi-\partial_{\epsilon}\vec{A}|$
 $\vec{B}=\vec{\nabla}\times\vec{A}$

c formulation of el

$$
\vec{E} = -\vec{\nabla}\phi - \partial \epsilon \vec{A}
$$

$$
\vec{B} = \vec{\nabla}\times \vec{A}
$$

In the relativistic formulation of electrodynamics the vector potential \vec{A} is promoted to the four-potential A^{μ} by noting that the scalar potential ¢ is actually the time component A^t of the four-potential.

With $A_{\mu}dx^{\mu'}=-\phi' d\epsilon'$ and $A_{\mu}dx^{\mu} = -5/3\phi'dt+4/3\phi'dx,$ and additionally assuming that $\phi'=1$, we are ready to plot A in both coordinate systems. With $dx^{\mu} (g_{\nu}) = 8^{\mu}v$, we now $-5/3 dt (g_{\epsilon}) = -5/3$ and $-5/3 dt (30e) = -5 \Rightarrow 30e$ traverses -5 units demarcated by $-5/3$ dt. Likewise, $4/5$ dx (3 de) = 4. We can represent

these relations with: $\frac{1}{\theta_k}$ $\frac{1}{\theta_k}$ $\frac{-s/s_d t}{s_d}$, $\frac{u_{13} dx}{u_{24}}$
 $\frac{v_{13} dx}{v_{13}}$ $\frac{v_{13} dx}{v_{13}}$

Why do we want to describe the four-potential A as a 1 -form? Consider the equation: $\vec{B} = \vec{\nabla} \times \vec{A}$. We can integrate both sides over a 2D manifold M. $\begin{array}{ccc}\n\iint \vec{B} \cdot d\vec{a} = \iint \vec{\nabla} \times \vec{A} \cdot d\vec{a} \\
\text{apply Stokes' theorem:} & \iint \vec{B} \times \vec{A} \times \vec{A} \\
\text{or} & \iint \vec{B} \cdot d\vec{a} \\
\iint \vec{B} \cdot d\vec{a} = \vec{A} \times \vec{A} \times \vec{A} \\
\text{or} & \iint \vec{A} \times \vec{A} \times \vec{A} \\
\text{or} & \iint \vec{A} \times \vec{A} \times \vec{A}\n\end{array}$ we can then apply Stokes' theorem: $\int \vec{B} \cdot d\vec{a} = \oint \vec{A} \cdot d\vec{l}$ M OM We notice that $\vec{A} \cdot d\vec{l} = A_i dx^i$, a 1-form! So we will be interested in evaluating integrals of the form $\int_A d x^{\mu} = \int_A A$
for some path γ .

The second equation to consider is the equation: $\vec{E} = -\vec{\nabla} \phi - \partial_{\epsilon} \vec{A}$ Looking at $\vec{\nabla}\phi$, boking at $V \phi$,
we find that $\vec{\nabla}\phi = \frac{\partial \phi}{\partial x} \hat{x} + \frac{\partial \phi}{\partial y} \hat{y} + \frac{\partial \phi}{\partial z} \hat{z}$. The dual to $\vec{\nabla}\phi$ with the flat space $(g=1)$ metric is: 18¢ ⁼ $\frac{\partial d}{\partial x}dx + \frac{\partial d}{\partial y}dy + \frac{\partial d}{\partial z}dz = \partial_1\phi dx^i$ By the chain rule, this is just the differential $d\phi$, which is a 1-form, depicted as level curves of ϕ !

Finally, let's discuss the term
$$
\partial_{\epsilon} \vec{A}
$$
.
\nIn index notation, this is $\frac{\partial A^{i}}{\partial x^{t}}$ (where $x^{t} = \epsilon$).
\nWe also have $\vec{\nabla}\phi$, which is $\frac{\partial A^{t}}{\partial x^{i}}$. Then, we have
\n
$$
\vec{E}^{i} = -\frac{\partial A^{t}}{\partial x^{i}} - \frac{\partial A^{i}}{\partial x^{i}}
$$
\n
$$
\vec{E}^{i} = -\frac{\partial A^{t}}{\partial x^{i}} - \frac{\partial A^{i}}{\partial x^{t}} = -\partial_{i}A^{t} - \partial_{\epsilon}A^{i}.
$$
\n
$$
\vec{B} = \vec{\nabla} \times \vec{A}
$$
 gives us:
$$
B^{i} = \frac{\partial A^{k}}{\partial x^{i}} - \frac{\partial A^{i}}{\partial x^{k}} = \partial_{i}A^{k} - \partial_{k}A^{i}.
$$

(Note that in flat space upper and lower indices carry no additional meaning .)

The equations $E^{\hat{i}} = -\partial_i A^{\hat{i}} - \partial_{\hat{r}} A^{\hat{i}}$ and $B^{\hat{i}} = \partial_i A^{\hat{k}} - \partial_k A^{\hat{i}}$ are unified in relativistic electrodynamics by the following equation : $E^{\lambda} = -\partial i A^{\dagger} - \partial_{\epsilon} A^{\dagger}$ and Italian:

ation:

Fuv = $\partial \mu A \nu - \partial \nu A \mu$

ectromagnetic field string tensor, and it is a

$$
F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}
$$

\

This is the electromagnetic field strength tensor, the Faraday tensor, and it is a 2-form!

In the next lesson, we will see how to express F in terms of basis a-forms.

The potential equations $(\vec{\boldsymbol{\epsilon}} = -\vec{\nabla}\phi - \partial_{\boldsymbol{\epsilon}}\vec{A}, \vec{B} = \vec{\nabla}\times\vec{A})$ have introduced us to three differential forms: $d\phi = \partial_{\mu}\phi dx^{\mu}$, a 1-form $A = A_{\mu}dx^{\mu}$, a 1-form F λ a λ - form. They are called so because they can be placed underneath an integral sign and integrated, as we saw with $\int_A A$. How do we visualize these?

 $A = A_{\mu} d x$ u
L we will visualize the same way, with one important difference : the curves depicting ^A will not necessarily close! We will see this next time.

Summary : The Minkowski metric of highlights how vectors and I forms (and their depictions!) are both needed to describe the geometry of spacetime . We also began to see how electromagnetism could be described using differential forms, some thing we first explored by considering the timeliness of potentials.